(1+cotθ+tanθ)(sinθ−cosθ)sec3θ−cosec3θ=sin2θcos2θ
LHS=(1+cotθ+tanθ)(sinθ−cosθ)sec3θ−cosec3θ
=1+cosθsinθ+sinθcosθ1cos3θ−1sin3θ ⎡⎣∵cotθ=cosθsinθ,tanθ=sinθcosθsecθ=1cosθ,cosecθ=1sinθ⎤⎦
=1+cos2θ+sin2θsinθcosθsin3θ−cos3θcos3θsin3θ(sinθ−cosθ)
=(sinθcosθ+1)sin3θcos3θsinθcosθ.(sin3θ−cos3θ)(sinθ−cosθ)(∵sin2θ+cos2θ=1)
=(1+sinθcosθ)sin2θcos2θ.(sinθ−cosθ)(sinθ−cosθ)(sin2+cos2θ+sinθcosθ)(∵a3−b2=(a−b)(a2+b2+ab)
=(1+sinθcosθ).sin2θcos2θ(1+sinθcosθ)=sin2θcos2θ=RHS
Hence proved.