wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(1+cotθ+tanθ)(sinθcosθ)sec3θcosec3θ=sin2θcos2θ

Open in App
Solution

LHS=(1+cotθ+tanθ)(sinθcosθ)sec3θcosec3θ

=1+cosθsinθ+sinθcosθ1cos3θ1sin3θ cotθ=cosθsinθ,tanθ=sinθcosθsecθ=1cosθ,cosecθ=1sinθ

=1+cos2θ+sin2θsinθcosθsin3θcos3θcos3θsin3θ(sinθcosθ)

=(sinθcosθ+1)sin3θcos3θsinθcosθ.(sin3θcos3θ)(sinθcosθ)(sin2θ+cos2θ=1)

=(1+sinθcosθ)sin2θcos2θ.(sinθcosθ)(sinθcosθ)(sin2+cos2θ+sinθcosθ)(a3b2=(ab)(a2+b2+ab)

=(1+sinθcosθ).sin2θcos2θ(1+sinθcosθ)=sin2θcos2θ=RHS

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon