The correct option is C 3n-6m+4=0
(125)n(52)(5−n2)3−(5n)3/2(5)3m(2)3(3)=125
⇒(53)n(52)(5−3n2)−(5n)3/2(5)3m(2)3(3)=152
⇒(53)n(52)(5−3n2)−(5n)3/2=(5)3m(2)3(3)52
⇒(53n)(52)(5−3n2)−(5n)3/2=(5)−2(5)3m(2)3(3)
⇒(53n−3n2+2)−(5n)3/2=(5)3m−2(2)3(3)
⇒(53n+42)−(5)3n/2=(5)3m−2(2)3(3)
⇒(53n2)[52−1]=(5)3m−2(2)3(3)
⇒(53n2)[24]=(5)3m−2(24)
comparingexponentsof5bothsides
3n2=3m−2
⇒3n=6m−4
⇒3n−6m+4=0