{(5z−2)2+40z}(5z+2)=
={(5z)2−(2×5z×2)+(2)2}+40z [We know, (a−b)2=a2−2ab+b2]
=25z2−20z+4+40z
=25z2+20z+4
=(5z)2+2×5z ×2+22 [on Factorizing]
=(5z+2)2 [We know, a2+2ab+b2=(a+b)2]
∴(5z−2)2+40z=(5z+2)2 So, {(5z−2)2+40z}(5z+2)=(5z+2)2(5z+2)=5z+2
[(5z−2)2+40z]÷(5z+2)
Solve: [(5z−2)2+40z]÷(5z+2)
Simplify: [(5z−2)2+40z]÷(5z+2)