a−ba+b=tan(A−B2)tan(A+B2)
a−ba+b=tan(A−B2)tan(A+B2)Let a = k sin A, b = k sin B (Using sine rule)LHS=a−ba+b=K sin A - K sin BKsinA+KsinB=sin A - sin Bsin A + sin B=2cos(A+B2)sin(A−B2)2sin(A+B2)cos(A−B2)=tan(A−B2)tan(A+B2)=RHS
If A and B are acute angles such that tan A=12,tan B=13 and tan (A+B)=tan A+tan B1−tan A tan B,find A + B
ca+b=1−tan(A2)tan(B2)1+tan(A2)tan(B2)
(TanA +cosec B)^2-(cot B-sec A)^2=2tanAcotB(cosecA+secB)
If sin(A+B)=√3/2 and cos(A-B)=√3/2, then find A and B. Hence find the value of tan(A+B)+tan(A-B).