wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

b2c2a2sin2A+c2a2b2sin2B+a2b2c2sin2C=0

Open in App
Solution

(b2c2a2)sin2A+(c2a2b2sin2B+(a2b2c2))sin2C=0
Let asinA=bsinB=csinC=K
a=ksinA,b=ksinB,c=ksinC
Now
On solving LHS we get
(b2c2a2)sin2A+(c2a2b2)sin2B+(a2b2c2)sin2C
(b2c2a2)=2ak(b2+c2a22bc)+(c2a2b2)2bk(c2+a2b22ca)+(a2b2c2).2ck.(a2+b2c22ab)
2kabc[(b2c2)(b2+c2a2)+(c2o2)(c2+a2b2)+(a2b2)(a2+b2c2)]
1kabc[0]=0=RHS.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Specific Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon