C01 + C23 + C45 + C67 +..........=
2nn+1
Putting the values of C0,C2,C4........., we get
= 1 + n(n−1)3.2! + n(n−1)(n−2)(n−3)5.4! + .........
= 1n+1[(n+1) + (n+1)n(n−1)3! + (n+1)n(n−1)(n−2)(n−3)5! + ..........]
Put n+1 = N
= 1N[N + N(N−1)(N−2)3! + N(N−1)(N−2)(N−3)(N−4)5! + .........]
= 1N{NC1 + NC3 + NC5 +..........}
= 1N{2N−1} = 2nn+1 { ∵ N = n+1}
Trick: Put n = 1, then S1 = 1C01 = 11 = 1
At n = 2, S2 = 2C01 + 2C23 = 1 + 13 = 43
Also (c) ⇒ S1 = 1, S2 = 43