The correct option is D 4
cos256∘ + cos234∘sin256∘ + sin234∘+3tan2 56∘×tan2 34∘
We know that,
cos θ=sin(90∘−θ)sin θ=cos(90∘−θ)tan θ=cot(90∘−θ)
By using these identities, we get,
=sin2 (90∘−56∘)+cos2 34∘cos2 (90∘−56∘)+sin2 34∘+3cot2(90∘−56∘)×tan234∘=sin2 34∘+cos2 34∘cos2 34∘+sin2 34∘+3cot2 34∘×tan234∘
Applying the trigonometric identitysin2θ+cos2θ=1 and the relation cot θ=1tan θ,
=11+3=4