wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cos3θ+sin3θcosθ+sinθ+cos3θsin3θcosθsinθ=2

Open in App
Solution

cos3θ+sin3θcosθ+sinθ+cos3θsin3θcosθsinθ=2LHS=cos3θ+sin3θcosθ+sinθ+cos3θsin3θcosθsinθ=(cos3θ+sin3θ)(cosθsinθ)+(cos3θsin3θ)(cosθ+sinθ)(cosθ+sinθ)(cosθsinθ)=cos4θcos3θ sinθ+cosθ sin3θsin4θ+cos4θ+cos3θ sinθcosθ sin3θsin4θcos2θsin2θ=2cos4θ2sin4θcos2θsin2θ=2[cos4θsin4θ]cos2θsin2θ=2(cos2θsin2θ)(cos2θ+sin2θ)cos2θsin2θ=2(cos2θ+sin2θ)=2×1=2=RHS


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon