cos3A−cos3AcosA + sin3A−sin3AsinA=
Given expression requires the values of sin3A and cos3A
sin3A=3sinA−4sin3A
cos3A=4cos3A−3cosA
Substituting the values of sin3A and cos3A, we get
cos3A−(4cos3A−3cosA)cosA+sin3A−3sinA−4sin3AsinA
=cos3A−4cos3A+3cosAcosA+−3sin3A+3sinAsinA
=−3cos3A+3cosAcosA+3sinA−3sin3AsinA
=−3cos2A+3+3−3sin2A
=6−3(sin2A+cos2A)
6−3=3