We have,
L.H.S.
cosA−sinA+1cosA+sinA−1
On rationalize and we get,
cosA−sinA+1(cosA+sinA)−1×(cosA+sinA)+1(cosA+sinA)+1
=cos2A+cosAsinA+cosA−sinAcosA−sin2A−sinA+cosA+sinA+1(cosA+sinA)2−12
=cos2A−sin2A+2cosA+1cos2A+sin2A+2sinAcosA−1
=cos2A+2cosA+1−sin2A1+2sinAcosA−1
=2cos2A+2cosA2sinAcosA
=2cosA(cosA+1)2sinAcosA
=cosA+1sinA
=cosAsinA+1sinA
=cscA+cotA
R.H.S.