cosθ1−sinθ=1+cosθ+sinθ1+cosθ−sinθ
RHS=1+cosθ+sinθ1+cosθ−sinθ
=[(1+cosθ)+sinθ](1+cosθ)−sinθ×[(1+cosθ)+sinθ](1+cosθ+sinθ)
=((1+cosθ)+sinθ)2(1+cosθ)2−sin2θ [Using (a+b)(a+b)=(a+b)2 and (a+b)(a−b)=a2b2]
=(1+cosθ)2+sin2θ+sinθ+sinθ(1+cosθ)1+cos2θ+2cosθ−sin2θ [Using (1+b)2=a2+b2+2ab]
=1+cos2+2.1cosθ+sin2θ+2sinθ(1+cosθ)1+cos2θ+2cosθ−(1−cos2θ) [Using sin2θ=1−cos2θ]
=1+1+2cosθ+2sinθ(1+cosθ)1−1+cos2θ+cos2θ+2cosθ [Using sin2θ+cos2θ=1]
=2+2cosθ+2sinθ(1+cosθ)2cos2θ+2cosθ
=2(1+cosθ)+2sinθ(1+cosθ)2cosθ(cosθ+1)=(1+cosθ)(2+2sinθ)2cosθ(1+cosθ)
=1+sinθcosθ×1−sinθ1−sinθ=cos2θ1−sinθ