wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cosθ1sinθ=1+cosθ+sinθ1+cosθsinθ

Open in App
Solution

RHS=1+cosθ+sinθ1+cosθsinθ

=[(1+cosθ)+sinθ](1+cosθ)sinθ×[(1+cosθ)+sinθ](1+cosθ+sinθ)

=((1+cosθ)+sinθ)2(1+cosθ)2sin2θ [Using (a+b)(a+b)=(a+b)2 and (a+b)(ab)=a2b2]

=(1+cosθ)2+sin2θ+sinθ+sinθ(1+cosθ)1+cos2θ+2cosθsin2θ [Using (1+b)2=a2+b2+2ab]

=1+cos2+2.1cosθ+sin2θ+2sinθ(1+cosθ)1+cos2θ+2cosθ(1cos2θ) [Using sin2θ=1cos2θ]

=1+1+2cosθ+2sinθ(1+cosθ)11+cos2θ+cos2θ+2cosθ [Using sin2θ+cos2θ=1]

=2+2cosθ+2sinθ(1+cosθ)2cos2θ+2cosθ

=2(1+cosθ)+2sinθ(1+cosθ)2cosθ(cosθ+1)=(1+cosθ)(2+2sinθ)2cosθ(1+cosθ)

=1+sinθcosθ×1sinθ1sinθ=cos2θ1sinθ


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon