cosecAcosecA−1+cosecAcosecA+1=2sec2A
Taking LHS;
⇒cosecAcosecA−1 + cosecAcosecA+1
Taking LCM of the denominator;
⇒cosecA(cosecA+1)+cosecA(cosecA−1)(cosecA+1)(cosecA−1)
⇒cosec2A+cosecA+cosec2A−cosecA(cosec2A−1)
⇒2cosec2A(cosec2A−1)
⇒2cosec2A(cosec2A−1)
⇒2sin2A1sin2A−1
⇒2sin2A1−sin2Asin2A
⇒21−sin2A
⇒2cos2A
⇒2sec2A
LHS = RHS, hence it is proved.