sin2A−sin2BsinAcosA−sinBcosB = a when A = 20∘ and B = 25∘.Find the value of 1a2.
We are given A = 20∘ and B=25∘. We will use this condition after simplifying the given expression. We also note that A+B=45∘.
sin2A - sin2B can be simplified as sin (A+B) sin (A-B). [We have sinAcosA and sinBcosB. After simplifying there are some chances of sin (A+B) or sin (A-B) getting cancelled from numerator).
⇒ sin2A−sin2BsinAcosA−sinBcosB = sin(A+B)sin(A−B)sin2A−sin2B2
[Now we can apply transformation formula]
= 2sin(A+B)sin(A−B)2sin(A−B)cos(A+B)
= tan(A+B)
A = 20∘, B = 25∘
⇒ tan(A+B) = 1 = a
⇒ 1a2 = 1
Key steps/concepts: (1) sin2A - sin2B = sin(A+B) × sin(A-B)
(2) sinAcosA = 12 sin2A
(3) sinA - sinB = 2sin(A−B)2cos(A+B)2