wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sin3A+cos3AsinA+cosA+sin3Acos3AsinAcosA=2

Open in App
Solution

LHS=sin3A+cos3AsinA+cosA+sin3Acos3AsinAcosA

=(sinA+cosA)(sin2A+cos2sinAcosA)(sinA+cos)+(sinAcosA)(sin2A+cos2+sinAcosA)sinAcos

(Using a3+b3=(a+b)(a2+b2ab)anda3b3=(ab)(a2+b2+ab)]

=(1sinAcosA)+(1+sinAcosA)(sin2A+cos2A=1)

=2=RHS.

Hence proved.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon