Substituting the value of sin3θ and cos2θ, we get
=3sinθ−4sin3θ1+2[2cos2θ−1]
=3sinθ−4sin3θ1+4cos2θ−2
=3sinθ−4sin3θ4cos2θ−1
We know, sin2θ+cos2θ=1. We will replace 1 with sin2θ+cos2θ
So, we get,
3sinθ−4sin3θ4cos2θ−sin2θ−cos2θ
=3sinθ−4sin3θ3cos2θ−sin2θ
=3sinθ−4sin3θ3(1−sin2θ)−sin2θ
=sinθ(3−4sin2θ)3−3sin2θ−sin2θ
=sinθ(3−4sin2θ)3−4sin2θ=sinθ