sin 3θ1+2 cos 2θ is equal to
cos θ
sin θ
−cos θ
We have,
sin θ1+2 cos 2θ=3 sin θ−4 sin2θ1+2(1−2 sin2θ)=3 sin θ−4 sin2θ1+2−4 sin2θ=sin θ(3−4 sin2θ)(3−4 sin2θ)=sin θ
Simplify sin3θ1+2cos2θ
Find the value of sin3θ/(1+2cos2θ)
cos
sin
The value of 2(sin 2θ+2cos2θ−1)cos θ−sin θ−cos 3θ+sin3θ is
The value of cos 3θ2 cos 2θ−1 is equal to