sin(90∘−θ)cos(90∘−θ)cot(90∘−θ) + sin2θ =
sin(90∘ – θ) = cos θ
cos(90∘– θ) = sin θ
cot(90∘ – θ) = tan θ
cosθsinθtanθ + sin2θ = cos2θ + sin2θ = 1
Prove that: sin(90−θ)cos(90−θ)cot(90−θ) + sin2θ = 1.
sin(90−θ)cos(90−θ)cot(90−θ) + sin2θ =
1+sin(90∘−θ)−cos2(90∘−θ)cos(90∘−θ) [1+sin(90∘−θ)]=