wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sin(Θ+ϕ)2sinΘ+sin(Θϕ)cos(Θ+ϕ)2cosΘ+cos(θϕ)=tanΘ

Open in App
Solution

sin(θ+ϕ)2sinθ+sin(θϕ)cos(θ+ϕ)2cosθ+cos(θϕ)=tanθ
Using identity:
sin(A±B)=sinAcosB±sinBcosA
cos(A±B)=cosAcosBsinAsinB
Now,
Taking L.H.S.-
sin(θ+ϕ)2sinθ+sin(θϕ)cos(θ+ϕ)2cosθ+cos(θϕ)
=sinθcosϕ+cosθsinϕ2sinθ+sinθcosϕcosθsinϕcosθcosϕsinθsinϕ2cosθ+cosθcosϕ+sinθsinϕ
=2sinθcosϕ2sinθ2cosθcosϕ2cosθ
=2sinθ(cosϕ1)2cosθ(cosϕ1)
=sinθcosθ
=tanθ
= R.H.S.
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon