8. Prove that : (i) sinA+sin3A+sin5AcosA+cos3A+cos5A=tan3A (ii) (ii)cos3A+2cos5A+cos7AcosA+2cos3A+cos5A=cos5Acos3A (iii) cos4A+cos3A+cos2Acos4A+sin3A+sin2A=cot3A (iv) sin3A+sin5A+sin7A+sin9Acos3A+cos5A+cos7A+cos9A=tan6A (v) sin5A−sin7A+sin8A−sin4Acos4A+cos7A+cos7A−cos5A−cos8A=cot6A (vi) sin5A+cos2A−sin6A cosAsinA sin2A−cos2A cos3A=tanA (vii) sin11A+sinA+sin7A+sin3Acos11A sinA+cos7A sin3A=tan8A (viii) sin3A cos4A−sinA cos2Asin4A sinA+cos6A cosA=tan2A (ix) sinA sin2A+sin3A sin6AsinA cos2A+cos3A cos6A=tan5A (x) sinA+2sin3A+sin5Asin3A+2sin5A+sin7A=sin3Asin5A (xi) sin(θ+ϕ)−2sinθ+sin(θ+ϕ)cos(θ+ϕ)−2cosθ+cos(θ+ϕ)
If sin θ=35 and cos ϕ=−1213 where θand ϕ both lie in the second quadrant, find the values of
(i) sin (θ−ϕ), (ii) cos (θ+ϕ), (iii) tan (θ−ϕ).
Prove that : cos3θ+cos3ϕ2cos(0−ϕ)−1 =(cosθ+cosϕ)cos(0+ϕ)−(sinθ+sinϕ)sin(θ+ϕ)