sin2A1+cos2A =
tanA
cotA
2tanA21−tan2A2
tan2A
sin2A1+cos2A
Substituting the values of sin2A=2sinA⋅cosA and cos2A=2cos2A−1
=2sinA.cosA1+2cos2A−1
=2sinA.cosA2cos2A=tanA
We know, tan2A=2tanA1−tan2A
So, tanA=2tanA21−tan2A2
How many of below given statements are correct?
1. sin2A = 2sinA.cosA
2.cos2A = sin2A−cos2A
3.tan A = 2tanA21−tan2A2
4. sin2A2 = 1 - cosA
5. tan2A = 1−cos2A1+cos2A
6. sin2A = 2tanA1−tan2A
If 3cot A=4. Prove that 1−tan2A1+tan2A=cos2A−sin2A.