The correct option is B secA
By Trigonometric identities
i)- sin2A+cos2A=1
⇒sin2A=1−cos2A
ii)- sec2A−tan2A=1
(or) sec2A=1+tan2A
(or) tan2A=sec2A−1
∴ √1−cos2A√sec2A−1 = √sin2A√tan2A = sinAtanA ---- (1)
and √1+tan2A√1−sin2A = √sec2A√cos2A = secAcosA ----(2)
From (1) and (2), we get,
√1−cos2A√sec2A−1×√1+tan2A√1−sin2A = sinAtanA ×secAcosA
= sinAcosA ×secAtanA [on rearranging]
= (tanA) ×secAtanA = sec A
Hence,
√1−cos2A√sec2A−1×√1+tan2A√1−sin2A=secA