√3−1√3+1=a−b√3 then the values of a and b are
a=1,b=2
a=2,b=1
a=2,b=3
a=3,b=2
√3−1√3+1 =√3−1√3+1×√3−1√3−1 =3+1−2√33−1 =4−2√32 =2(2−√3)2 =2−√3 ⇒a=2,b=1
If √3−1√3+1=a+b√3, then the values of ′a′ and ′b′ are _________.
In ΔABC, right angled at B, if cot A = √3 then the value of cos A x sin C + sin A x cos C =