√5+12i+√5−12i√5+12i−√5−12i=
Given:
√5+12i+√5−12i√5+12i−√5−12i
Lets move through rationalize the denominator,
=(√5+12i+√5−12i√5+12i−√5−12i)×(√5+12i+√5−12i√5+12i+√5−12i)
=(√5+12i+√5−12i)2(√5+12i)2−(√5−12i)2
=((5+12i)+(5−12i)+2√52−(12i)25+12i−5+12i)
=10+2√25+14424i
=10+2⋅1324i⋅ii
=36i24i2
=3i2(−1) [∵i2=−1]
=−32i
Hence, Option A is correct.