tan2θ1+tan2θ + cot2θ1+cot2θ =
0
-1
1
2
tan2θsec2θ + cot2θcosec2θ
= sin2θcos2θ1cos2θ + cos2θsin2θ1sin2θ = sin2θ + cos2θ = 1
(i) sin2θ+1(1+tan2θ)=1 (ii) 11+tan2θ+11+cot2θ=1
Prove:
(i)sin2θ+11+tan2θ=1
(ii)11+tan2θ+11+cot2θ=1