tan3θ1+tan2θ+cot3θ1+cot2θ=1−2sin2θcos2θsinθcosθ
LHS=tan3θ1+tan2θ+cot3θ1+cot2θ
=sin2θcos3(1+sin2θcos2θ)+cos3θsin3(1+cos2θsin2θ)=(∵tanθ=sinθcosθ and cotθ=cosθsinθ)
=sin3θcos2θcos3θ(cos2θ+sin2θ)+cos3θsin2θsin3θ(sin2θ+cos2θ)
=sin3θcosθ+cos3θsinθ[∵cos2θ+sin2θ=1]
=sin4θ+cos4θsinθcosθ
=(sin2θ)2(cos2θ)2+2sin2θcos2θ−2sin2θcos2θsinθcosθ (adding and subtracting 2sin2θcos2θ)
=(sin2θ+cos2θ)2−2sin2θcos2θsinθcosθ
=12−2sin2θcos2θsinθcosθ[∵sin2θ+cos2θ=1]
=1−2sin2θcos2θsinθcosθ=RHS
Hence proved.