wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

tan3θ1+tan2θ+cot3θ1+cot2θ=12sin2θcos2θsinθcosθ

Open in App
Solution

LHS=tan3θ1+tan2θ+cot3θ1+cot2θ

=sin2θcos3(1+sin2θcos2θ)+cos3θsin3(1+cos2θsin2θ)=(tanθ=sinθcosθ and cotθ=cosθsinθ)

=sin3θcos2θcos3θ(cos2θ+sin2θ)+cos3θsin2θsin3θ(sin2θ+cos2θ)

=sin3θcosθ+cos3θsinθ[cos2θ+sin2θ=1]

=sin4θ+cos4θsinθcosθ

=(sin2θ)2(cos2θ)2+2sin2θcos2θ2sin2θcos2θsinθcosθ (adding and subtracting 2sin2θcos2θ)

=(sin2θ+cos2θ)22sin2θcos2θsinθcosθ

=122sin2θcos2θsinθcosθ[sin2θ+cos2θ=1]

=12sin2θcos2θsinθcosθ=RHS

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon