tanA1−cotA+cotA1−tanA=(secAcosecA+1)
LHS=tanA1−cotA+cotA1−tanA=(sinA/cosA)(1−cosAsinA)+(cosA/sinA)1−sinAcosA
sinAcosA(sinA−cosA)sinA+cosAsinA(cosA−sinA)cosA
=sin2AcosA(sinA−cosA)+cos2AsinA(cosA−sinA)=sin3A−cos3AcosAsinA(sinA−cosA)
=(sinA−cosA)(sin2A+cos2A+sinAcosA)cosAsinA(sinA−cosA) [Using a3−b3=(a−b)(a2+b2+ab)]
=1+sinAcosAsinAcosA[∵sin2A+cos2A=1]
=1sinAcosA=sinAcosAsinacosA
=sec A cosec A+1
[∵1cosA=secA,1sinA=cosecA]
=RHS
Hence proved.