tanθsecθ + cotθcosecθ in terms of sinθ and cosθ (if sinθ = x and cosθ = y) can be written as:
tanθsecθ = sinθ = x ---------------------------i
cotθcosecθ = cosθ = y ---------------------------ii
Adding i + ii = x + y
Prove the following trigonometric identities.(i) 1+cosθ+sinθ1+cosθ−sinθ=1+sinθcosθ
(ii) sinθ−cosθ+1sinθ+cosθ−1=1secθ−tanθ
(iii) cosθ−sinθ+1cosθ+sinθ−1=cosecθ+cotθ
(iv) (sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ