tan3xtanx never lies between
-1/3 and 0
1/3 and 3
-1/3 and 1/3
1 and 3
Let y = tan3xtanx ⇒ y = 3tanx−(tan3x)(1−3tan3x)tanx
⇒ tan3x(3y−1)=y=3
⇒ tan2x=y−33y−1
Now tan2x≥0 for all x ∴y−33y−1≥0
⇒ (y-3)(3y-1) ≥ 0
⇒ y ≤13 or y ≥ 3
⇒ y never lies between 13 and 3
The zeros of the polynomial p(x)=3x2−1 are (a) 13 and 3 (b) 1√3 and √3 (c) −1√3 and √3 (d) 1√3 and −1√3
If tanx+tan(x+π3)+tan(x+2π3)=3, prove that 3tan x−tan3x1−3tan2 x=1.
Or
If sinθ=nsin(θ+2α), prove that tan(θ+α)=1+n1−ntanα.