(x2−2x+3x2−4x+3)>−3or(x2−2x+3x2−4x+3)+3>0or(x2−2x+3+3x2−12x+9x2−4x+3)>0or(4x2−14x+12(x−3)(x−1))>0or(2x2−7x+6(x−3)(x−1))>0or(2x2−4x−3x+6(x−3)(x−1))>0or(2x(x−2)−3(x−2)(x−3)(x−1))>0or((x−2)(2x−3)(x−3)(x−1))>0∴x∈(−∞,1)∪((32),2)∪(3,∞)
limx→3x2−4x+3x2−2x−3