We have,
x(y+z−x)logx=y(z+x−y)logy=z(x+y−z)logz
Let,
x(y+z−x)logx=y(z+x−y)logy=z(x+y−z)logz=k
Then,
logx=x(y+z−x)k......(1)
logy=y(z+x−y)k.......(2)
logz=z(x+y−z)k........(3)
Multiplying by yin equation (1) and (3) to and multiplying by x in equation (2) and we get,
ylogx=xy(y+z−x)k......(4)
xlogy=xy(z+x−y)k.......(5)
ylogz=yz(x+y−z)k........(6)
Multiplying by zin equation (1) and (2) to and multiplying by x in equation (3) and we get,
zlogx=xz(y+z−x)k......(7)
zlogy=yz(z+x−y)k.......(8)
xlogz=xz(x+y−z)k........(9)
On adding equation (4) and (5),(6) and (8),and (7) and (9) to respectively and we get,
ylogx+xlogy=xy(y+z−x)k+xy(z+x−y)k
logxy+logyx=xy2+xyz−x2y+xyz+x2y−xy2k
log(xyyx)=2xyzk.......(a)
ylogz+zlogy=yz(x+y−z)k+yz(z+x−y)k
log(zyyz)=2xyzk.......(b)
zlogx+xlogz=xz(y+z−x)k+xz(x+y−z)k
log(xzzx)=2xyzk.......(c)
Now, equation (a),(b) and (c) to,
log(xyyx)=log(zyyz)=log(xzzx)
Then, xyyx=zyyz=xzzx
Hence, this is the answer.