From a helicopter vertically above a straight horizontal plane. If the angles of depression of two consecutive kilometer stones on the same side of the helicopter are found to be θ and φ, where θ > φ, then the height of the helicopter from the ground is (in km)
InΔABC,
tanθ=ABBC
⇒BC=ABtanθ ....(i)
InΔABD,
tanϕ=ABDB
⇒ϕ=ABDC+BC (∵DB=DC+BCandDC=1km)
⇒tanϕ=AB1+BC (∵DC=1km)
⇒1+BC=ABtanϕ
⇒1+ABtanθ=ABtanϕ [From (i)]
⇒1=ABtanϕ−ABtanθ
⇒1=AB(tanθ−tanϕ)tanθtanϕ
⇒AB=tanθtanϕtanθ−tanϕ
∴ Required height of the helicopter is AB = tanθtanϕtanθ−tanϕ
Hence, the correct answer is option (b).