Given: 6 bulbs are defective out of 30.
Then,
Number of non-defective bulbs
= 30 − 6 =24
A sample of 4 bulbs is drawn at random with replacement.
Let
X: be a number of defective bulbs.
Hence,value of X are 0,1,2,3 &4
Here,
picking bulbs is a Bernoulli trial
So,X has binomial distribution
P(X=x)=nCxan−xbx ...(1)
n= number of times we pick a bulb =4
a = probability of getting defective bulb
a = 630 = 15
b= probability of getting non defective ball
b = 1−a=1−15=45
Substituting values of a & b in (1).
Hence,
P(X=x) = 4Cx(15)x(45)4−x
Now,
P(X=0) = 4C0(15)0(45)4−0
⇒ P(X=0)=4C0(15)0(45)4 = 256625
P(X=1)=4C1(15)1(45)4−1
P(X=1)=4C1(15)1(45)3
⇒ P(X=1)=4×64625=256625
P(X=2)=4C2(15)2(45)4−2
P(X=2)=4C2(15)2(45)2
⇒ P(X=2)=6×16625=96625
P(X=3) = 4 C3 (15)3(45)4−3
P(X=3)=4C3(15)3(45)1
⇒ P(X=3)=4×4625=16625
5) P(X=4)=4C4(15)4(45)4−4
⇒ P(X=4)=4C4(15)4(45)0=1625
Therefore, probability distribution is
X01234P(X)25662525662596625166251625