Question 3 From a point in the interior of an equilateral triangle, perpendiculars are drawn on the three sides. The lengths of the perpendiculars are 14cm, 10cm and 6cm.Find the area of the triangle.
Open in App
Solution
Let ABC be an equilateral triangle, O be the interior point and AQ, BR and CP are the perpendicular drawn from point O. Let the each side of an equilateral triangle be m. AreaofΔOAB=12×AB×OP[∵areaofatriangle=12(base×height)] =12×a×14=7acm2⋯(i) AreaofΔOBC=12×BC×OQ =12×a×10=5acm2⋯(ii) AreaofΔOAC=12×AC×OR =12×a×6=3acm2⋯(iii)
∴ Area of an equilateral ΔABC,=Areaof(ΔOAB+ΔOBA+ΔOAC) =(7a+5a+3a)=15acm2⋯(iv) We have, semi-perimeter s=a+a+a2⇒s=3a2cm ∴ Area of an equilateral ΔABC=√s(s−a)(s−b)(s−c) [by Heron’s formula] =√3a2(3a2−a)(3a2−a)(3a2−a) =√3a2×a2×a2×a2=√34a2⋯(v) From Equations (iv) and (v), √34a2=15a ⇒a=15×4√3×√3√3=60√33=20√3cm putting a=20√3 in Equation (v), we get AreaofΔABC=√34(20√3)2 =√34×400×3 =300√3cm2 Hence, the area of an equilateral triangle is 300√3cm2