From a point in the interior of an equilateral triangle, perpendiculars are drawn to its sides. The lengths of perpendiculars are 14cm, 10cm and 6cm. Find the area of the triangle.
Open in App
Solution
Let DEF be equilateral triangle Let eah side be 'a' cm. AreaofΔDEF=AreaofΔDOA+AreaofΔDOF+AreaofΔEOF√34a2=12×a×14+12×a×10+12×a×6⇒√34a2=7a+5a+3a=15a⇒a(√34a−15)=0⇒a=60√3=20√3cm∴AreaoftriangleDEF=√34a2=√34×(20√3)2=√34×20×√3×√3=300√3cm2=300√3cm2.