In right angled triangle OFA, we have
OA2=AF2+OF2 ..........(1)
Using Pythagoras theorem,
In right angled triangle OBD, we have
OB2=OD2+BD2 ..........(2)
In right angled triangle OEC, we have
OC2=OE2+CE2 ..........(3)
Adding equations (1),(2) and (3) we get
OA2+OB2+OC2=AF2+OF2+OD2+BD2+OE2+CE2
OA2+OB2+OC2=AF2+BD2+CE2+OF2+OD2+OE2
AF2+BD2+CE2=OA2+OB2+OC2−OD2−OE2−OF2 is proved.
(ii) We can re-write the above proved result as
AF2+BD2+CE2=(OA2−OE2)+(OB2−OF2)+(OC2−OD2)
AF2+BD2+CE2=AE2+CD2+BF2
Hence proved.