Let the point P be (h,k)
Draw PL′ parallel to MO and PL parallel to NO
In △PLM,cosω=LMPL
OM=OL+LMOM=h+kcosω
So, the coordinates of M are (h+kcosω,0)
In △PL′N,cosω=L′NPL′
⇒L′N=PL′cosω=hcosωON=OL′+L′NON=k+hcosω
So the coordinates of N are (0,k+hcosω)
Equation of MN is
y−0=k+hcosω−00−(h+kcosω)(x−h−kcosω)y=−k+hcosωh+kcosω(x−h−kcosω)−yh−ykcosω=kx−kh−k2cosω+hxcosω−h2cosω−hkcos2ωh2cosω+k2cosω+hk(1+cos2ω)=h(y+xcosω)+k(x+ycosω)
It passes through (a,b)
⇒h2cosω+k2cosω+hk(1+cos2ω)=h(b+acosω)+k(a+bcosω)
Replacing h by x and y by k
x2cosω+y2cosω+xy(1+cos2ω)=x(b+acosω)+y(a+bcosω)
is the required locus of P