Let the point P be (h,k)
Draw PL′ parallel OM and PL parallel ON
In △PLMcosω=LMPL
⇒LM=PLcosω=kcosωOM=OL+LMOM=h+kcosω........(i)
In △PL′Ncosω=L′NPL′
⇒L′N=PL′cosω=hcosωON=OL′+L′NON=k+hcosω......(ii)
Given OM−ON=2d
Using (i) and (ii)
h+kcosω−k−hcosω=2dh−k−cosω(h−k)=2d(h−k)(1−cosω)=2d(h−k)(1−(1−2sin2ω2))=2d(h−k)2sin2ω2=2dh−k=dcsc2ω2
Replacing h by x and y by k
x−y=dcsc2ω2