From a point perpendicular tangents are drawn to ellipse x2+2y2=2. The chord of contact touches a circle which is concentric with given ellipse. Then find the ratio of maximum and minimum area of circle
The director circle of ellipse x22+y21=1 is x2+y2=2+1=3
Let the point on ellipse be P(√3cos θ,√3sinθ)
Equation of chord of contact is xx1+2yy1=2
x.√3cosθ+2y√3sinθ−2=0
It touches x2+y2=r2
r=2√3cos2θ+12sin2θ=2√3+9sin2θ
When sinθ=0 then r attains maximum value,
So, rmax=2√3
When sinθ=1 then r attains minimum value,
So, rmin=2√12=22√3=1√3
⇒rmaxrmin=2√31√3=2
Therefore, the ratio of maximum and minimum area of circle =(rmaxrmin)2=4