We have,
From an external point P, a tangent PT and a line segment PAB are drawn to a circle with centre O.
Prove that:-PA.PB=PT2
Proof:-
According to figure,
Draw ON⊥AB
Therefore, AN=BN
Also,
We have,
PT=PA×PB(Bytangentsecantproperty)......(1)
InΔONA,
OA2=ON2+AN2......(2)
Similarly, In ΔPTO,
OP2=OT2+PT2
PT2=OP2−OT2
⇒ON2+PN2−OA2(SinceOA=OT)
⇒ON2+PN2−ON2−AN2
⇒PT2=PN2−AN2......(3)
From equation (1) and (3) to,
PA×PB=PN2−AN2
PA×PB=PT2
Hence, proved.