Let the point P be (at1t2,a(t1+t2))
The tangent equations are t1y=x+at21 and t2y=x+at22
Since the tangents make angles θ1 and θ2 with the axis, 1t1=tanθ1 and 1t2=tanθ2
⇒cosθ1=t1√t21+1,cosθ2=t2√t22+1
According to the given condition, t1√t21+1×t2√t22+1=μ
⇒(t1t2)2=μ2×[(t1t2)2+t21+t22+1]
⇒(t1t2)2=μ2×[(t1t2)2+(t1+t2)2−2t1t2+1]
Let at1t2=x and a(t1+t2)=y
∴(xa)2=μ2×[x2a2+y2a2−2xa+1]
⇒x2=μ2(x2+y2−2ax+a2)
∴x2=μ2(x−a)2+μ2y2 is the required locus