Let (2secθ,tanθ) be the point on hyperbola x24−y21=1
∴ Chord of contact of tangents drawn from the point (2secθ,tanθ) to the hyperbola x28−y22=1 is xsecθ4−ytanθ2=1
Asymptotes of the hyperbola x28−y22=1 is x2√2±y√2=0
Intersection points of the asymptotes to the chord of contact are
(4cosθ1−sinθ,2cosθ1−sinθ) and (4cosθ1+sinθ,−2cosθ1+sinθ)
So required area is =12|x2y1−y2x1|=12∣∣∣4cosθ1+sinθ×2cosθ1−sinθ+2cosθ1+sinθ×4cosθ1−sinθ∣∣∣=8