The correct option is D √sgn(−x2)
We know, A function having a single point in its domain is a point function.
Option (a) : Let f1(x)=√2x−4+√4−2x
For domain, 2x−4≥0 and 4−2x≥0
⇒x≥2 and x≤2
⇒ Domain of f1∈{2}
∴f1 is a point function.
Option (b) :
Let f2(x)=√3x−6+√3−x
For domain, 3x−6≥0 and 3−x≥0
⇒x≥2 and x≤3
⇒ Domain of f2∈[2,3]
∴f2 is not a point function.
Option (c) :
f3(x)=√2x−4+ln(2−x)
For domain, 2x−4≥0 and 2−x>0
⇒x≥2 and x<2
⇒ Domain of f3∈{ϕ}
∴f3 is not a point function.
Option (d) :
f4(x)=√sgn(−x2)
For domain, sgn(−x2)≥0
⇒sgn(−x2)=0 or sgn(−x2)=1
⇒−x2=0 or −x2>0
⇒x=0 or x∈{ϕ} (∵−x2≤0 ∀ x∈R)
⇒ Domain of f4∈{0}
∴f4 is a point function.