From mean value theorem, f(b)−f(a)=(b−a)f1(x1);a<x1<biff(x)=1xthenx1=
We have,
f(b)−f(a)=(b−a)f′(x1)
f′(x1)=f(b)−f(a)(b−a)∴a<x1<b
Given that,
f(x)=1x
f(b)=1b
f(a)=1a
Now,
f′(x1)=1b−1ab−a
=a−babb−a
f′(x1)=−1ab
Given that,
f(x)=1x
f′(x)=−1x2
So,
−1x2=−1ab
x2=ab
x=√ab
Hence, this is the answer.