We know Area of triangle=12×Base×Height.
i)In △ABC,Base=AB=3cm and Height=AC=4cm
So, Area of △ABC=12×3×4=6cm2
ii)We apply Pythagoras theorem in △ABC and get
BC2=AB2+AC2, substitute all values we get
BC2=32+42=16
BC=5cm
iii)We apply Pythagoras theorem in △ABD and get
AB2=AD2+BD2
AD2=AB2−BD2,substitute values we get
AD2=32−BD2=9−BD2 .......(1)
Apply Pythagoras theorem to △ACD and get
AC2=AD2+CD2,
AD2=AC2−CD2,
AD2=AC2−(BC−BD)2
AD2=AC2−BC2−BD2+2BC.BD
AD2=32−52−BD2+2×5.BD
AD2=−16−BD2+10BD
9−BD2=−16−BD2+10BD
10BD=25
BD=2.5
Substitute the value in eqn(1), we get
AD2=9−(2.5)2=9−6.25=2.75
∴AD=1.65cm
∴ The length of altitude from A to BC is AD=1.65cm