The correct option is A 83
By definition we know,
∫baf(x)dx = lim n→∞b−an[f(a)+f(a+h)+f(a+2h)...f(a+(n−1)h)]
Where h=b−an
Here, a=0;b=2;f(x)=x2;h=2−0n=2n
Therefore,
∫20(x2)dx = limn→∞2n[f(0)+f(0+2n)+f(0+4n)...f(0+(n−1)2n)]
=limn→∞2n[0+22n2+42n2+.....(2(n−1))2n2]
=limn→∞2n(22+42+62+...(2(n−1))2n2)
=limn→∞2n(22(12+22+32...(n−1)2)n2)
=limn→∞2n.4n2.(n−1)(n)(2(n−1)+1)6
=limn→∞86(1−1n)(2−1n)
=86.2 (on applying limits)
=83