From the following data, mark the option(s) where ΔH is correctly written for the given reaction.
Given : H+(aq) + OH−(aq) → H2O(ℓ); ΔH = −57.3kJ
ΔHsolution of HA(g) = −70.7 kJ/mol
ΔHsolution of BOH(g) = +20 kJ/mol
ΔHionization of HA = 15 kJ/mol and BOH is a strong base.
ReactionΔHr (kJ/mol)(a)HA(aq)+BOH(aq)→ BA(aq)+H2O−42.3(b)HA(g)+BOH(g)→BA(aq)+H2O −93(c)HA(g)→H+(aq)+A−(aq) −55.7(d)B+(aq)+OH−(aq)→BOH(aq) −20
ReactionΔHr (kj/mol)(a)HA(aq)+BOH(aq)→ BA(aq)+H2O−42.3
ReactionΔHr (kj/mol)(b)HA(g)+BOH(g)→BA(aq)+H2O −93
ReactionΔHr (kj/mol)(c)HA(g)→H+(aq)+A−(aq) −55.7
HA(g) + aq → HA(aq) ΔH = −70.7 ....(1)
BOH(g) + aq → BOH(aq) Δ H = 20 ....(2)
HA(g) + BOH(g) → HA(aq) + BOH(aq) ΔH = −50.7 ....(3)
HA(aq) + BOH(aq) → BA(aq) + H2O ΔH= (−57.3 + 15) = −42.3 ....(4)
Remember, the formation of water, H+(aq) + OH−(aq) → H2O(ℓ); ΔH = −57.3kJ is hidden in the above equation. When you mix the aq acid and the aq base, you get the salt BA and water forms. The ionisation of HA requires a heat input of 15 kJ/mol and the formation of water releases 57.3 kJ/mol. That's what the above reaction is telling us.
The rest of the steps are self explanatory, just use Hess Law and match the relevant options.
(3) + (4)
HA(g) + BOH(g) → BA(aq) + H2O ΔH = −50.7−42.3 = −93
HA(aq) → H+(aq) + A−(aq) → ΔH = 15 ....(5)
(1) + (5)
HA(g) → H+(aq) + A−(aq) ΔH = −70.7 + 15 = −55.7