wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

From the following figure,
find:
(i) y
(ii) sinxo
(iii) (secxotanxo)(secxo+tanxo)
1242747_1931ce657410489c85cc2f2d6d337874.png

Open in App
Solution

Given that,
(i) y=?
(ii) sinx2=?
(iii) (secxotanxo)(secxo+tanxo)=?
According to given figure,
By Pythagoras theorem,
(Hypotenuse)2=(perpendicular)2+(Base)2
22=12+y2
41=y2
(i) y=3
(ii) sinxo=perpendicularHypotenuse
sinxo=y2
sinxo=32
(iii) (secxotanxo)(secxo+tanxo)
sec2xotan2xo
(AB)(A+B)=A2=B2
So, By part (ii)
sinxo=32
sinxo=sin60o
xo=60o put (iii)
sec2xotan2xo
sec260otan260o
(2)2(3)2
43
1
sec2xotan2xo=1
Hence, this is the answer.

1197430_1242747_ans_e2a19ddc948341dbb1d61bbdd8805cc7.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Specific Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon