To prove that θ+ϕ=90∘, we check if triangle ABC is right angle or not using pythagoras theorem.
AB = 9+16 = 25 (hypotenuse)
AC = 15 (base)
BC = 20 (perpendicular)
Now, let's check √(15)2+(20)2=√225+400=√625=25=AB
Thus, we can say that θ+ϕ=90∘
In triangle ACD
Check AC =√AD2+CD2=√(9)2+(12)2=20
Thus, triangle BCD is right angled triangle
Now, the value of sinα,cosβ and tanϕ
To find sinα,
In triangle ACD,
sinα=opposite sidehypotenuse=1215To find cosβIn triangle BCD,cosβ=adjacent sidehypotenuse=1620=45To find tanϕIn triangle BCD,tan ϕ=opposite sideadjacent side=1612=43