From the given Venn diagram find (i) A (ii) B (iii) A∪B (iv) A∩B Also verify that n(A∪B)=n(A)+n(B)−n(A∩B)
Open in App
Solution
From the Venn diagram (i) A={a,b,d,e,g,h} (ii) B={b,c,e,f,h,i,j} (iii) A∪B={a,b,c,d,e,f,g,h,i,j} and (iv) A∩B={b,e,h} So, n(A)=6,n(B)=7,n(A∪B)=10,n(A∩B)=3. Now n(A)+n(B)−n(A∩B)=6+7−3=10 Hence, n(A)+n(B)−n(A∩B)=n(A∪B)