From the prices of shares X and Y given below : find out which is more stable in value :
X:35545253565852505149Y:108107105105106107104103104101
xi|d|=(xi−Mean)d235−1316924−245765241653525568645810100524165021651394911480980
¯¯¯¯¯X=1n∑xi=110[480]=48
var (x) = 1n{∑(xi−¯¯¯x)2}=110{980}=98
S. D (x) = √var(x)=√98=9.9
Coefficient of variation = S.D¯¯¯¯¯¯X1×100=9.948×100=20.6
xd=(x−Mean)d235−1316924−24576524165352556864581010052416502451394911480980
¯(x)=1n∑xi=110[1050]=105
var(x) = 1n{∑(xi−¯¯¯x)2}=140{40}=4
∴ S.D .(x) = √var(x)=√4=2
Coefficient of variation for shares Y=S.D¯¯¯¯X×100=2105×100=1.90
Since the coefficient of variation for shares Y is smaller than the coefficient of variation for shares X, they are more stable.