Given, 2|y|−∣∣2y−1−1∣∣=2y−1+1
Case I: When y∈(−∞,0]
∴2−y+(2y−1−1)=2y−1+1⇒2−y=2⇒y=−1∈(−∞,0] ...(i)
Case II: When (0,1]
∴2y+(2y−1−1)=2y−1+1⇒2y−2y=0
⇒2y=2⇒y=1∈(0,1] ...(ii)
Case III: When y∈(1,∞)
∴2y−2y−1+1=2y−1+1
⇒2y−2.2y−1=0⇒2y−2y=0 true for all y>1 ...(iii)
∴ From Equations (i),(ii),and (iii), we get y∈{−1}∪[1,∞)